

Corporate Finance
 Book 1

Dr Terence Tse
? www.linkedin.com/in/terencetse

Is this a good investment? Now available for sale

Corporate Finance: The Basics is a concise introduction to the inner workings of finance at the company level. It aims to take the fear out of corporate finance and add the fun in, presenting the subject in a way that is simple to grasp and easy to digest. Its aim is to explain - and demystify - the essential ideas of corporate finance, avoiding the heavy use of maths and formulae. The calculations and figures in the book are purely to illustrate fundamental concepts, appealing to readers' common sense, rather than stretch their ability to do "numbercrunching".

On your journey to understanding corporate finance, you may wish to consult several textbooks. But are they necessary evils?

Text book

Description and comments

- Jonathan Berk and Peter DeMarzo (2011) 'Corporate Finance', $2^{\text {nd }}$ Global Edition, Pearson
- Newer and older editions as well as international editions are perfectly good substitutes
- Stephen Ross, Randolph Westerfield and Bradford Jordan (2006) 'Corporate Finance Fundamentals', 7th edition, McGraw Hill
- Richard Brealey, Steward Myers and Franklin Allen (2006) 'Corporate Finance', 8th edition, McGraw Hill
- Almost all corporate finance-related text books cover the same concepts
- The fact is that every corporate finance textbook will cover all the topics in this course

Financial analysis can be achieved through different methods

Financial ratios are the most common method used for financial analysis

- Understand the significance of accounting data by comparing:
- Over time
- Across the industry/sector
- Ratios can help normalise and facilitate meaningful comparisons
- Taking apart a ratio can help develop insights

Financial ratios are ways of comparing and investigating the relationship between pieces of financial information

Aspects

Description

- Financial ratios are measures of relative values of key financial information
- Ratio analysis involves methods of calculating and interpreting financial ratios to assess a firm's performance
- Ratio analysis comes in various measurements such as
- Percentages ['\%’]
- Times or multiples [' x ']
- Number of days ['days']
- Ratios are of interest to the following people as they are key indicators of financial health
- Management team of the company
- Creditors
- Shareholders
- Prospective investors

There are two main types of ratio comparison

Types

Description

- Cross-sectional analysis involves the comparison of different firms at the same point of time
- Benchmarking firm performance against industry averages is very popular

Price-Earning ratio

	2004 A
Barclays	$9.1 x$
HBOS	$8.9 x$
HSBC	$4.2 x$
Lloyds	$9.9 x$
9 UK Banks	$10.7 x$

There are two main types of ratio comparison (cont'd)

Types

Description

- Time-series analysis evaluates performance over time, allowing comparisons of current and past ratio values to take place

Price-Earning ratio

	2004 A	2005 E	2006 E
	9.1 x	9.6 x	8.8 x

- Combined analysis mixes both features of cross-sectional and time-series analysis

Price-Earning ratio

	2004A	2005 E	2006 E
	9.1 x	9.6 x	8.8 x
Barclays	8.9 x	9.5 x	8.9 x
HBOS	4.2 x	4.6 x	5.1 x
HSBC	9.9 x	10.5 x	9.7 x
Lloyds			
	$10.7 x$	$10.5 x$	$9.7 x$

Copyright © 2018 Terence Tse

There are five broad categories of ratios, each revealing different aspects of a

 firm's performanceTypes
Description

- Leverage ratios address a firm's long-term ability to meet its obligations and financial leverage
- Liquidity ratios refer to a firm's ability to satisfy its short-term obligations when needed
- The primary concern is the firm's ability to pay its bills in the short term without undue stress
- Efficiency or activity ratios measure how efficiently and intensively a firm uses its assets to generate sales
- Profitability ratios measure how efficiently a firm uses its assets and how efficiently a firm manages its operations
- The focus is on the bottom line (i.e. net income)
- Market-to-value ratios measure how the market views the performance of a firm

Topic 1: Financial Ratios for Financial Analysis Financial Ratios

1 Leverage ratios address a firm's long-term ability to meet its obligations and financial leverage

Types
Description

- Takes into account all debts of all maturities to all creditors
- Sometimes, value of leases are counted as long-term debt because they resemble long-term debt
- Can be expressed in 'x', ‘\%' or ':'

Debt ratio

- The proportion of equity and debt the company is using to finance its assets

Equation

$\frac{\text { Long term debt }{ }^{*}}{\text { Long term debt }+ \text { Equity }}$

- Again, sometimes the value of leases are counted as long-term debt because they resemble long-term debt
- Can be expressed in 'x', '\%' or ' $:$ '

[^0]1 Leverage ratios address a firm's long-term ability to meet its obligations and financial leverage (cont'd)

Description
Equation

- The extent to which interest is covered by EBIT [plus depreciation]

EBIT
$\overline{\text { Interest }}$

- Usually expressed in ' x '

2 Liquidity ratios refer to a firm's abilities to satisfy its short-term obligations as they come due

3 Efficiency or activity ratios measure how efficiently and intensively a firm uses its assets to generate sales

Types

Description

- Sales-to-assets or asset turnover ratio shows how hard a firm's assets are being put to use
- Usually expressed in ' x '

Equation

Sales
$\overline{\text { Total assets }}$

Example

	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 6}$	Δ
Turnover	$£ 1,110,678$	$£ 697,720$	$\uparrow 59.19 \%$
Average total assets	$£ 315,528$	$£ 171,160$	$\uparrow 84.35 \%$
Asset turnover	$3.52 x$	$4.08 x$	N/A

3) Efficiency or activity ratios measure how efficiently and intensively a firm uses its assets to generate sales (cont'd)

Types

Description

- Inventory turnover shows how many times a company's inventory is sold and replaced over a period
- Usually expressed in 'x'

Equation

Cost of goods sold Inventory

Inventory

Cost of goods sold $\div 365$
... which is the same as ...
365
$\overline{\text { Cost of goods sold }}$ \div Inventory

Example

	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 6}$	Δ
COGS	$£ 830,126$	$£ 505,738$	$\uparrow 64.14 \%$
Inventory	$£ 52,437$	$£ 51,482$	$\uparrow 1.86 \%$
Days in inventory	23.06 days	37.42 days	

3 Efficiency or activity ratios measure how efficiently and intensively a firm uses its assets to generate sales (cont'd)

Types

Description

- Accounts receivable days (also called Average Collection Period) measures how quickly customers pay their bills
- The industry average was 60 days
- Expressed in 'days'
- Accounts payable days measures how quickly the firm pays the bill and pay off the outstanding balance owed to the suppliers
- Expressed in 'days'

Equation

Accounts receivable Sales $\div 365$
... which is the same as...
$\frac{365}{\text { Sales } \div}$

Accounts payable
$\overline{\text { Cost of goods sold } \div 365}$
... which is the same as...
365
$\overline{\text { Cost of goods sold } \div}$ Accounts payable

Exercise

(£ millions)	2006	2005	2004
Tesco			
Inventory	1,464	1,309	1,199
Cost of good sold	36,426	31,231	28,936
Inventory turnover			

Sainsbury

Inventory	576	559	753
Cost of good sold	14,994	14,544	15,655
Inventory turnover Days in inventory			
WM Morrisons			
Inventory	399	425	150
Cost of good sold	9,156	9,110	3,681
Inventory turnover			
Days in inventory			

4 Profitability ratios measure how efficiently a firm uses its assets and how efficiently a firm manages its operations

Description

- Net profit margin shows the proportion of sales that finds its way into profits
- Usually expressed in '\%'
- It is useful to compare net profit margin with gross profit margin
- Example 1

	Premium Airline A	Low-cost Airline B
Gross profit margin	5.62%	27.46%
Net profit margin	4.05%	10.87%

- Example 2

	Software Business
Gross profit margin	89.55%
Net profit margin	27.15%

4 Profitability ratios measure how efficiently a firm uses its assets and how efficiently a firm manages its operations (cont'd)

Types	Description	Equation
Return on assets	- Return on assets measures how profitable a company is relative to its assets	$\frac{\text { Net income }}{\text { Total assets }}$
	- Expressed in '\%'	
Return on equity	- Return on equity shows how much profit a company generates with the money shareholders have invested - Expressed in '\%'	$\frac{\text { Net income }}{\text { Equity }}$
Payout ratio	- Payout ratio measures the proportion of earnings that is paid out as dividends - Can be expressed in '\%' or	$\frac{\text { Dividends }}{\text { Earnings }}$

5 Market-to-value ratios measure how the market views the performance of a firm

By linking profitability and efficiency ratios, the DuPont system provides some useful information

Types

Description

- Return on assets links a firm's sales-to-asset ratio and its profit margin

$$
\text { ROA }=\frac{\text { Net income }}{\text { Total assets }}=\frac{\text { Sales }}{\text { Total assets }} \times \frac{\text { Net income }}{\text { Sales }}
$$

Example

	Asset turnover \times Profit margin	$=$ Return on assets	
Fast-food	2.0	5%	10%
Luxury hotel	0.5	20%	10%

By linking profitability and efficiency ratios, the DuPont system provides some useful information (cont'd) Types
 Description

- Return on equity can be expanded into 3 components

$$
\text { ROE }=\frac{\text { Net income }}{\text { Equity }}
$$

- Let us break this formula down and look at the individual components

$$
\begin{aligned}
& R O E=\text { Profit margin } \times \text { Asset turnover } \times \text { Leverage } \\
& \qquad \frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total assets }} \times \frac{\text { Total assets }}{\text { equity }}
\end{aligned}
$$

- Since the first two terms are ROA, ROE must therefore mean:

$$
R O E=R O A \times \text { Leverage }
$$

- This makes sense because the return that the equity shareholders can get must be the return generated by the assets plus the return generated by the leverage

Topic 2: Introduction to Corporate Finance Introduction to corporate finance

Corporate finance focuses on three main concerns

Main concerns

Description

- The process of planning and managing a firm's long-term activities
- The financing of the firm through a mixture of debt and equity
- The amount of money available for day-to-day operation of a business

Main question to ask

- In what long-lived assets should you invest? Which lines of business do you want to enter, and what sort of buildings, machinery and equipment will you need?
- How can you raise cash for your investment?

Corporate finance focuses on three main concerns (cont'd)

Main concerns

Related concepts of finance

- Net present value
- Internal rate of return
- Cost of capital
- Equity securities (e.g. shares)
- Debt securities (e.g. bonds, short- and long-term loans)
- Cost of capital
- Current assets
- Current liabilities
- The formula for calculating working capital is current assets - current liabilities

Financial markets play an extremely important role in corporate finance

Source: Ross et al. (2005)

There are many types of financial instruments available in the financial markets. They can be placed in 2 broad categories

Categories

Description

- Shares (with or without voting rights)
- Debt (credit, bonds, treasury bills, notes, commercial papers)
- Options
- Futures
- Swaps
- Convertibles
- These instruments allow the following actions to take place:
(1) Inter-temporal exchange
(2) Exchange of risk to take place

Inter-temporal exchange enables participants in the financial markets to make the optimal choice of the time of consumption

- Andy wants to buy some flower seeds, plant them in his garden and get a profit of 20% in 6 months
- But Andy has no money to buy the seeds
- Without financial markets, Andy will not be able to grow flowers and Betty will have to spend her holiday at her parents' place
- Betty works day and night throughout the year at a bank
- She has no time to spend her salary right now but wants to take a long vacation in 6 months
- But her salary cannot cover the dream vacation she wants
- With the financial markets, Betty can lend Andy the money today. In return, Andy return Betty with a bit of profit. In this way, everyone gains
- Financial markets allow money to be exchanged according to the optimal time of consumption and resources to be transferred over time
- Caroline owns an umbrella company. If the summers are dry, then she will not have enough money to retire 10 years from now
- Derek owns a swimsuit company. Business will be bad if the summers are wet. If that is the case, then he will not be able to retire 10 years from now
- Without financial markets, neither Caroline nor Derek will be able to change the risk that they face
- With the financial markets, Derek can sell shares of his company to Caroline and vice versa
- Alternatively, they can sell shares of their company to Euan (to share potential losses or gains)
- Financial markets benefit everyone through adjusting the level of risk one wants to carry
- The level of risk undertaken should be compensated by a corresponding level of return

The financial markets come in various forms

Forms

Description

- Money markets are the markets for debt securities that will pay off in the short-term (usually less than one year)
- They are comprised of a series of closely connected wholesale 'over-the-counter' (OTC) short-term financial markets
- Interbank market is a form of money markets
- Capital markets are markets for long-term debt (with a maturity at over one year) and for equity shares
- Markets in which foreign currencies are bought and sold
- Buying and selling of risk though derivative products such as options, futures and forwards
- Markets can also be described as primary and secondary
- Primary market is used when governments and corporations initially sell securities or initial public offerings (IPOs). Corporations engage in 2 types of primarymarket sales of debt and equity: public offerings and private placements
- Secondary markets are places where, after debt and equity securities are originally sold, they are traded in the secondary markets

There are 3 basic forms of business organisation. Each has its own advantages and disadvantages:

Main areas

2
2

Partnership

Strengths

- Low organisational cost
- Income taxed once as personal income
- Independence
- Secrecy
- Ease of dissolution
- Improved funding sources
- Increased managerial talent
- Income split by partnership contract, taxed as personal income
- Owners' liability limited
- Large capitalisation possible; greater funding
- Ownership readily transferable
- Indefinite life
- Professional management

Weaknesses

- Unlimited liability
- Limited funding
- Proprietor must be all
- Difficult to develop staff career opportunities
- Lack of continuity on death of proprietor
- Unlimited liability to all partners
- Partnership dissolved upon death of partner
- Difficult to liquidate or transfer ownership
- Higher tax rates
- Expensive organisation
- Greater government regulation
- Lacks secrecy when publicly traded
- Agency problem

There are allegedly many financial objectives that company managers should be achieving. But there is only one goal that these managers should be pursuing:

Hiring managers to run companies is effectively separating ownership from management. There are both pros and cons associated with this separation

Time value of money is one of the most fundamental ideas of finance, one which is firmly grounded in the concept of compound interest

Using compound interest, we can calculate an investment over several periods of time

From this example, it is possible to see the relationship between present and future values

- Following this logic, we can say that £121 in two years time is worth as much as £100 today

From this relationship between present and future values, we can reach a very important concept of finance - time value of money

Hence, we can say that a pound today is worth more than a pound tomorrow

You can think about this statement this way:
A pound today is worth more than a pound tomorrow because you can invest the pound today and start earning interest immediately

- This is the $1^{\text {st }}$ principle of corporate finance
- Money has different value over time - hence the expression Time Value of Money
- Indeed, the further a $£$ is into the future, the less it is worth

The formula for calculating future value is shown earlier. To calculate present value, we simply have to re-arrange the same formula

- Taking the formula for calculating future value (FV) earlier,

$$
F V=C \times(1+r)^{t}
$$

- it is possible to re-arrange it to calculate the present value (PV), that is, today's value of a cash flow or a series of cash flows in the future
$P V=$

So, we can calculate the PV of a future cash flow by discounting the latter. But what is r exactly? r is tricky because it carries different names to represent different concepts

Previously, we examined the concepts of future and present value as well as their relationship

Concepts

(2)

Present value

Direction

When you are trying to figure out the value of $£ 1$ at a future date

- Presen
 Future

Formula
\qquad
-

Hence:

- A£ today is worth more than a£ tomorrow
- 2 amounts are not directly comparable if they are not available in the same time period
- Conversely, comparison between the 2 amounts can only be made in the same time period

Topic 3: Net Present Value and Cost of Capital

The Concept of Risk

Example

Aspects

Description

- Suppose your equipment supplier suggests to you a new machine that will produce $£ 500,000$ worth of products next year. The machine costs $£ 450,000$. Is it a good purchase if the discount rate is 5% ?

$$
P V=\frac{£ 500,000}{(1+0.05)}
$$

$=£ 476,190$

- Since $£ 476,190$ is greater than the cost of the machine of $£ 450,000$, it is a good purchase

- Logic dictates that the more risky a project is, the greater the return you would expect/want to get from it

Risk is reflected and taken into consideration in the calculation of PV

Example

- Suppose in the previous example you believe there is some risk involved in the project and that you believe that it is as risky as another investment that requires a 11\% return. So:

$$
\begin{aligned}
P V & =\frac{£ 500,000}{(1+0.11)} \\
& =£ 450,450
\end{aligned}
$$

- Since $£ 450,450$ is greater than the cost of the machine of $£ 450,000$, it is a good purchase
- But what happens if the project is as risky as a project that requires a 14\% return?

Premise

- Note that the PV of the project with higher risk (reflected by $r=11 \%$ and 14%) is smaller than the PV of the project with lower risk shown earlier ($r=5 \%$)
- Why? It is because a safe pound is worth more than a risky pound
- This is the $2^{\text {nd }}$ principle of corporate finance
- Therefore you will find that the PV of more risky projects will always be smaller than the PV of those projects that are less risky

While we can calculate the PV for a cash flow in one period, we can calculate the PV for a stream of cash flows in multiple periods

Aspects

Description

- Now suppose your equipment supplier proposes to you a new machine that will produce $£ 250,000$ worth of products next year and another $£ 250,000$ in the year that follows. The machine costs $£ 450,000$. Is it a good purchase if the discount rate is 5% ?

$$
\begin{aligned}
P V & =\frac{£ 250,000}{(1+0.05)}+\frac{£ 250,000}{(1+0.05)^{2}} \\
& =£ 464,853
\end{aligned}
$$

- Since $£ 464,853$ is greater than the cost of the machine of $£ 450,000$, it is a good purchase

One of the best ways to understand the calculation of the PV of multiple cash flows is to translate it into a diagram

£464,853

This calculation method for reaching the PV of a series of cash flow is called discounted cash flow (DCF)

- In other words, discounted cash flow is merely addition of all the future cash flows that take into account time value of money

This calculation method for reaching the PV of a series of cash flows is called discounted cash flow (DCF) (cont'd)

Example 1

Aspect

Copyright © 2018 Terence Tse

Description

- Frankie Boyd wants to sell his old car. His friend, Jim Bow, has agreed to buy it for $£ 4,000$. However, he can only pay for it 2 years from now. At the same time, a car dealer is offering $£ 3,500$ for the car. If the interest rate is 8%, which offer represents a better deal for him?
- Given that the 2 amounts ($£ 4,000$ and $£ 3,500$) occur in 2 different time periods, they cannot be compared directly. Hence, we will calculate the PV of Jim's offer:

$$
\mathrm{PV}=\frac{£ 4,000}{(1+8 \%)^{2}}=£ 3,429
$$

- By bringing both offers to today's value, they can be put side-by-side for comparison. Since, the car dealer's offer represents a higher amount/value, it is a better deal than what Jim offers

Example 2

Aspects

Problem

Description

- Ricky Mann, another friend of Frankie, proposes to pay £2,000 in year 2 and $£ 2,300$ in year 4 for the old car. Should Frankie accept Ricky's or Jim's offer if the discount rate is 8% ?
- There are 2 ways to answer this question

Solution

(1) Discount all the cash flows to the present

$$
P V=\frac{£ 2,000}{(1+8 \%)^{2}}+\frac{£ 2,300}{(1+8 \%)^{4}}=£ 3,405
$$

- This amount is smaller than $£ 3,429$. Therefore, Jim's offer is better
(2) Alternatively, discount the year 4 cash flow to year 2

$$
\mathrm{PV}=\frac{£ 2,300}{(1+8 \%)^{2}}=£ 1,971
$$

- Adding the $£ 2,000$ due in year 2 to this amount, the total is $£ 3,971$. This is smaller than the $£ 4,000$ offered by Jim. Therefore, Jim's offer is better (which is the same conclusion from method 1).

Example 3

Aspects

Copyright © 2018 Terence Tse

Description

- Zara "Lipstick" Palin is also interested in buying the car from Frankie. She wants to pay $£ 2,500$ twice, once in year 2 and once in year 4. As tough as a pit bull, she asks Frankie to pay $£ 500$ to replace the brakes in year 3. What is the value of this offer if the discount rate is 8% ?
- The PV can be calculated this way:

$$
\mathrm{PV}=\frac{£ 2,500}{(1+8 \%)^{2}}+-\frac{£ 500}{(1+8 \%)^{3}}+\frac{£ 2,500}{(1+8 \%)^{4}}=£ 3,584
$$

While the DCF method discussed so far allows you to make investment decisions, it does not tell you the value of the return that you make

Aspects

Description

- Following up the machine purchase example:

Now suppose your equipment supplier proposes to you a new machine that will produce $£ 250,000$ worth of products next year and another $£ 250,000$ in the year that follows. The machine still costs $£ 450,000$. Is it a good purchase if the discount rate is 5% ?

- Since $£ 464,853$ is greater than $£ 450,000$, it is a good purchase
- But do you pocket the $£ 464,853$?
- The answer is no. This is because the cost of the machine is £450,000
- This means that you only make $£ 14,853$ ($£ 464,853-£ 450,000)$
- This $£ 14,853$ is the value that you can create by undertaking this investment

The amount that you can actually pocket is called the Net Present Value (NPV)

Aspects

Description

- NPV is the project's net contribution to wealth
- NPV is the measure of how much value is created or added by undertaking the investment
- NPV is one of the most popular methods to make investment decisions (i.e. whether to go ahead with a project)
- NPV is equal to present value of cash flows minus the initial cost of investment (also called the cash outlay) [See next slide for the mathematical representation]
- If the PV of cash flows is greater than the initial cost of investment, then one should go ahead with the project

Hence,

- If NPV > 0, then a project is worth undertaking and should be accepted
- If the NPV <0, then a project is not worth undertaking and should be rejected

Mathematically, NPV can be depicted in the following way:

- Usually, the formula is written this way...

Exercise

Problems

Description

- What is the net present value of the following cash flow stream if the discount rate is 6% and the cash outlay is $€ 5,400$?

Year	Cash flow	
1	$€$	2,000
2	$€$	4,000
3	$€$	6,000

- Would you rather receive $€ 100$ in year 1 and $€ 1,500$ in the following year or just $€ 1,600$ in year 2 if the interest rate is 5\%?

Before moving onto the different mechanisms in calculating PV, it is necessary to look at how cash flows are determined...

Aspects

Valuing costs and benefits

Description

- Need to quantify the costs and benefits from a variety of management disciplines, such as marketing, economics, organisational behaviour, strategy and operations
- It is important to use market prices and not perceived value as the basis of calculating costs and benefits
- The practice of buying and selling equivalent goods in different markets to take advantage of a price difference is known as arbitrage
- Arbitrage opportunity exists when it is possible to make a profit without taking any risk or making any investment
- Arbitrage should not exist in a normal, competitive market because the price difference will disappear quickly once it is spotted
- The logical extension to arbitrage is that if the prices in 2 markets differ, investors will profit immediately, buying in the market where it is cheap and selling in the market where it is expensive
- The law of one price dictates that if equivalent investment opportunities trade simultaneously in different competitive markets, then they must trade of the same price in both markets
- Hence, it is possible to use any competitive price without checking the price in all possible markets

Copyright © 2018 Terence Tse
Before moving onto the different mechanisms in calculating PV, it is necessary to look at how cash flows are determined ... (cont'd)

Aspects

Valuing a security

The NPV of

 trading security
Valuing a portfolio

Description

- An investment opportunity that trades in the financial market is known as a financial security or simply security
- In a normal market, Price (security) = PV (all cash flows paid by the security)
- Since there should be no arbitrage opportunity existing in a normal market, trading securities should neither create nor destroy value
- Value on a security is created by real investment projects in which firms engage
- This leads to the so-called separation principle, which says that it is possible to evaluate the NPV of an investment decision separately from the decision the firm makes, regarding how to finance the investment or any other security transactions the firm is considering
- Since the price for a security should be the same in all possible markets in which it exists, the combined price of 2 securities must be the same as the prices of the 2 securities added together. Ergo:

[^1]
Description

Risky vs.
 risk-free cash flows

- Individuals who take a higher risk must be compensated
- Hence, risk premium must be paid
- The risk that an individual is willing to take depends on his/her risk appetite
- Risk is relative to the overall market - the risk of a security must be evaluated in relation to the fluctuations of other investments in the economy
- A security's risk premium will be higher the more its returns tend to vary with the overall economy and the market index. The opposite is also true
- Therefore, to calculate PV of cash flows, it is necessary to use a discount rate that includes both risk-free rate and the risk premium for the investment
- $r_{\text {investment }}=r_{\text {risk-free }}+$ risk premium for the investment
- Risk-free rate is the interest rate at which money can be borrowed or lent without risk over a period
- When there are transaction costs, the prices of equivalent securities can deviate from each other but not by more than the transaction costs of the arbitrage

Aspects

Description and example

- A perpetuity is a level stream of cash flow which continues forever (e.g. £1,000 a year forever)
- Formula for calculating the PV of a perpetuity is:

$$
P V \text { of a perpertuity }=\frac{C_{1}}{r}
$$

- You want to create a scholarship that pays £2,000 a year. How much do you have to donate if the interest rate is 10% ?

A growing perpetuity, on the other hand, is a payment stream without end and is expected to rise at the same rate indefinitely

Aspects

Description and example

- A growing perpetuity is a stream of cash flows that grow at a rate forever
- Formula for calculating the PV of a growing perpetuity is:
$P V$ of a growing perpertuity $=\frac{C_{1}}{r-g}$
- How much do you have to donate to create the above scholarship if the annual inflation rate is 3% with £2,000 paying out starting in year 1?

It is important to note that the numerator in this and the previous equation is the cash flow in period $1\left(C_{1}\right)$ and not at date 0 (C_{0})

An annuity is a level stream of regular payments that lasts for a fixed number of periods

Aspects

Copyright © 2018 Terence Tse

Description and example

- An annuity is a stream of constant or level cash flows that occurs at the end of each period for a fixed number of periods (e.g. the $£ 1,000$ a year for 5 years)
- Formula for calculating the PV of an annuity is:
$P V$ of an annuity $=C \times\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]$
- A) An asset that promised to pay $£ 500$ at the end of each of the next 3 years and you want to earn 10% a year on your investment. What is the present value of this asset?
- B) What is the present value of this asset if it is 30 years instead of 3 years?

A growing annuity is a stream of growing cash flows that occur at regular intervals and eventually come to an end

Aspects

Description and example

Growing Annuity

- A growing annuity is a stream of cash flows that occurs at the end of each period. It grows at a constant rate for a fixed number of periods
- The formula for calculating the PV of a growing annuity is:

$$
P V \text { of growing annuity }=C \times \frac{1}{r-g}\left[1-\left(\frac{1+g}{1+r}\right)^{t}\right]
$$

- You have been offered a job at $£ 80,000$ a year. You

Questions

 anticipate your salary increasing by 9\% a year until your retirement in 40 years. Given the interest rate of 20%, what is the PV of your lifetime salary?
Exercise

Problem

Description

- Frankie wants to use the money from selling the old car towards buying a new one in 5 years. How much money would he have if he accepts the offer from Ricky (i.e. £2,000 in year 2 and $£ 2,300$ in year 4)? The discount rate is 8%.
- But Frankie has no confidence in Ricky. Ricky is often overoptimistic with his finance and will always pay a year later. What would be the PV of his offer now?
- You are considering a plan that would allow you to draw \$8,000 every year until the day you turn 60. What is the value of this plan today if you have just turned 30 and the interest rate is 10% ?
- I. M. Smart has been working on an advanced technology in laser eye surgery. His technology will be available in the near term. He anticipates his first annual cash flow from the technology to be C\$200,000, received next year. Subsequent annual cash flows will grow at 5\% forever. What is the PV of the technology if the discount rate is 10% ?

Exercise (cont'd)

Question

Description

- Frankie has decided that he has to buy a BMW 330i (a red 2 door with 6 -speed gear box and leather seats, of course). The dealer offers him a 4-year leasing contract with the following conditions:
- Down payment: £1,748
- A security deposit that will be returned at the end of the contract: £300
- 4 annual payments: $£ 3,020$
- Buy back: $£ 16,454$ (this is the price that you pay in year 4 to pay off the car. If Frankie does not pay this, he will have to hand the car back to the dealer) If the interest rate is 10%, what is the price of the car?
- A second dealer has a special offer for the same car with the specifications for £22,000. This special offer is only available for immediate purchase. Is this a better deal for Frankie?

Book, Liquidation and Market Values

Shares (also known as stocks) refer to the partial ownership of a company. There
are at least 3 ways to put a value on a share

Types
Description

- Net worth of the firm according to the balance sheet
- Book values record all the money that a company has raised from its shareholders plus all the earnings that have been ploughed back on their behalf
- Book value is not equal to share price
- e.g. Vodafone
- Book value as of fiscal year ending $30^{\text {th }}$ March, 2008 = £28.2
- Share price = £26.98
- The price/book ratio is $0.98 x$
- Hence, investors in the stock market do not just buy and sell shares at book value
- This is so because book value does not capture the true value of a business

Shares (also known as stocks) refer to the partial ownership of a company. There are at least 3 ways to put a value on a share (cont'd)

Types

Description

- The amount of cash per share a company could raise if it sold off all its assets in second hand markets and paid off all its debts
- It does not equal to share price because a successful company ought to be worth more than liquidation value. Hence, it does not capture the value of a successful going concern

Shares (also known as stocks) refer to the partial ownership of a company. There are at least 3 ways to put a value on a share (cont'd)

Types

Description

- Market value is the amount that investors are willing to pay for the shares of the firm
- This depends on the earning power of today's assets and the expected profitability of future investments
- Therefore, market value is not the same as book or liquidation value as it, unlike book value and liquidation value, treats the firm as a going-concern - and hence the share price
- The value of a going-concern comes from:
- Extra earning power from using the assets both tangible and intangible
- Intangible assets such as R\&D (e.g. Amgen's price to book ratio is $3.62 x$ is partly attributable to this)
- Value of future investments (betting that the company's know-how and brand name will allow it to expand)

Topic 4: Equity Share
Important Concepts and Ratios Related to Share Valuation

There are several concepts and ratios related to share valuation

Concepts and rat | $\begin{array}{c}\text { Types of } \\ \text { shares }\end{array}$ |
| :---: |

Book equity

 per share (BVPS)Earnings per share (EPS)

Return on equity (ROE)

Description Formula

- Growth shares - investors expect to benefit from capital gains; interested in future growth of earnings
- Income shares - investors seek cash dividends
- A measure that represents a per share assessment of the (theoretical) minimum value of a company's equity
- The portion of a company's profit allocated to each outstanding common share
- It serves as an indicator of a company's profitability
- A measure of a corporation's profitability that reveals how much profit a company generates with the money shareholders have invested

Value of common equity
on balance sheet Average shares outstanding

Net income - Dividends to preferred shares Average shares
outstanding
Net income
$\overline{\text { Shareholders' equity }}$

There are several concepts and ratios related to share valuation (cont'd)

Copyright © 2018 Terence Tse

Description

- Fraction of earnings paid out as dividends
- Investors can use the payout ratio to determine what companies are doing with their earnings
- The fraction of earnings retained by the firm for re-investing in the firm
- For companies that are experiencing high growth, they can choose to pay less or no dividend and use the profit to re-invest into the business
- A valuation ratio of a company's current share price compared to its per-share earnings

Formula

Dividends
EPS

1 -payout ratio

Market value per share (i.e. share price)

EPS

Shares are often quoted with other important information

Shares are often quoted with other important information (cont'd)

[^2][^3]Topic 4: Equity Share
Valuation of Share

We can use the DCF method to calculate the price of a share, which is the PV of next year's dividend and share price

	Types	Description	
- The cash payoff to owners of common shares comes in two forms...	Dividends Capital gains or losses	- 'Discretionary' payments made by the company to its shareholders - Capital gain is the appreciation of a capital asset over its purchase price - If the price of the asset has declined instead of appreciated, this is called a capital loss	- So, the current share price is a composition of both dividend to be paid next year and the price of the share in the next year - Mathematically, it can be represented by the following: $P_{0}=\frac{D_{1}+P_{1}}{(1+r)}$

We can use DCF to calculate the price of a share, which is the PV of next year's dividend and share price (cont'd)

Example

- An investor anticipates that the share of Company XYZ to be $\$ 110\left(\mathrm{P}_{1}\right)$ and the dividend in the next year is $\$ 5$ (D_{1})
- What is the share worth today if the cost of capital is $15 \%(r)$?

Taking the formula presented above:

$$
P_{0}=\frac{D_{1}+P_{1}}{(1+r)}
$$

We can calculate P_{0}

$$
\text { We can calculate } P_{0}
$$

$$
\begin{aligned}
P_{0} & =\frac{\$ 5+\$ 110}{(1+15 \%)} \\
& =\frac{\$ 115}{1.15} \\
& =\$ 100
\end{aligned}
$$ share price in year 1 must be a composition of both dividend and share price in year 2. This can be represented as follows:

$$
P_{1}=\frac{D_{2}+P_{2}}{(1+r)}
$$

Next year's share price is then the PV of the expected dividend and the PV of share price of the following year

-Following the previous calculations, the share price today is equal to:	By replacing P_{1} with the formula provided above, $P_{0}=\frac{D_{1}+\frac{D_{2}+P_{2}}{(1+r)}}{(1+r)}$$\quad$$D_{1}$ $(1+r)$$\frac{D_{2}}{(1+r)^{2}}+\frac{P_{2}}{(1+r)^{2}}$

- Following this logic, it can be seen that the share price in the second year is determined by the expected dividend and capital gain/loss in the third year
- Therefore,

$$
P_{2}=\frac{D_{3}+P_{3}}{(1+r)}
$$

Extending this line of thinking, the share price today is essentially the PV of all future dividends

The dividend discount model comes in different variations, depending on the size of the dividends

Variations

Description and question

- Assumes that future dividends will remain constant at the level of the last dividend paid by the company (in other words, all dividends in the future are exactly the same - i.e. it does not grow at all)

$$
D_{1}=D_{2}=D_{3}=D_{4}
$$

- How do we compute the current price of a share?

Constant growth

- Assumes that dividends will grow at the constant rate g per year beginning from the last dividend paid by the company, i.e.

$$
D_{1}=D_{0} \times(1+g)
$$

- We can plug this constant growth calculation in the dividend discount model
P_{0}

$$
\begin{aligned}
& =\frac{D_{1}}{(1+r)}+\frac{D_{1} \times(1+g)}{(1+r)^{2}}+\frac{D_{1} \times(1+g)^{2}}{(1+r)^{3}} \\
& +\frac{D_{1} \times(1+g)^{3}}{(1+r)^{4}}+\cdots=\sum_{t=1}^{\infty} \frac{\mathbf{D}_{\mathbf{1}} \times(\mathbf{1}+\mathbf{g})^{t-1}}{(\mathbf{1}+\mathbf{r})^{t}}
\end{aligned}
$$

The dividend discount model comes in different variations depending on the size of the dividends (cont'd)

Variations

Description

- Although there is an infinite number of terms, each term is proportionately smaller than the preceding one; and
- because the present value of far-distant dividends will be ever closer to zero, the sum of all of these terms is finite despite the fact that an infinite number of dividends will be paid
- The previous formula can be rewritten in short as:

$$
P_{n}=\frac{D_{n+1}}{r-g}
$$

as long as $r>g$

- This is called the dividend growth model or Gordon-Shapiro model
- It is important to note that this assumption should not be thought of as implying that dividends are expected to growth exactly at the rate g. Rather, g should be thought of as an average growth rate of dividends

The dividend discount model comes in different variations depending on the size of the dividends (cont'd)

Variations

Description

- Company pays different dividends before settling down with a constant dividend
- To value shares with non-constant growth requires 3 steps:
- 1) Conducting multiple cash flow analysis for the PV of the dividends from year 1 to year n
- 2) Calculating the value of all future dividends, i.e. the price of the share in year n-1
- 3) Discounting 2) to the present and add 1)

$$
P_{0}=\frac{D_{1}}{(1+r)}+\frac{D_{2}}{(1+r)^{2}}+\frac{D_{3}}{(1+r)^{3}}+\cdots \frac{D_{n}}{(1+r)^{n}}+\frac{P_{n}}{(1+r)^{n}}
$$

Step 1: Discount all the dividends from year 1 to year n

Step 3: Discount of the result from step 2 and add to the

Step 2: Discount the share price in year n note that P_{n} is the $P V$ of all the dividends paid out from year $n+1$
\qquad
Copyright © 2018 Terence Tse result from step 1

Example

Problem

- A chemical product producer expects to pay a dividend of $\$ 1.30$ at the end of next year, $\$ 1.80$ at the end of the second year and $\$ 2.00$ at the end of year 3. After that, the dividend paid out each year is expected to grow at 3% per year forever. If the discount rate is 7%, what is the share price of the company today?
- The question can broken down into 3 parts: (1) 'lining up’ the dividends that are growing a non-linear fashion,(2) calculating the share price that captures all the dividends that grow linearly and (3) discount all cash flows

	Year 1		(1) Year 2		Year 3		Beyond year 3
Dividends	\$	1.30	\$	1.80	\$	2.00	\$ 2.06
Share price					\$	51.50	
Discount factors		1.07		1.14		1.23	(2)
PV 3		1.21		1.57		43.67	
Total PV	\$	46.46					

Exercise

Problems

Problem 2

Description

- With the required rate of return to be 10%, what is the value of the share today for a company when you expect the dividends to be as follows:

Year	Dividends	
1	$£$	1.00
2	$£$	2.00
3	$£$	2.50
Beyond 3	5% growth per year	

- The gym chain MyClub is expected to pay the dividends in the next 5 years, as stated in the following table. If the discount rate is 5.60%, what is the share price of MyClub today?

Year	Dividends	
1	$£$	1.02
2	$£$	1.13
3	$£$	1.25
4	$£$	1.39
5	$£$	1.54
Beyond 5	3.36% growth per year	

Topic 4: Equity Share
Determinants of " r " and " g "

So far we have focused on the calculation of share price. But what is r?

and g ?

- For a firm that does not issue extra shares or bonds, it can only make an investment if it does not pay all its earnings out as dividends
- So, if the firm can retain some earnings and use it to invest, it will be able to increase the earnings of next year. This leads to the following equation:

Earnings $_{\text {next year }}=$ Earnings $_{\text {this year }}+\left(\right.$ Investment $_{\text {this year }} \times$ Return on investment $)$

- We can divide the two sides with Earnings ${ }_{\text {this year }}$:

- To simplify it:

But what determines the growth of dividends or g ? (cont'd)

(1)The investment the firm can make this year depends on the amount of money retained and then invested. Hence:

$$
\text { Investment }_{\text {this year }}=\text { Earnings }_{\text {this year }} \times \text { Plowback ratio }
$$

- Let us look deeper into how to calculate: Investment this year
(2) Return on the investment

Where plowback ratio (or b) is the percentage of the amount kept by the company and not pay out as dividend
(2) As for the rate of return that can be made from the investment, it is often difficult to determine. The details on forthcoming projects are not generally public information. Therefore, many analysts rely on historical return on equity (after all, the investment is funded by retained earnings) to forecast the return

Return on investment $=$ Return on equity (also called ROE)

- Substituting investment ${ }_{\text {this year }}$ and return on investment:
$g=\frac{\text { Earnings }_{\text {this year }} \times b \times R O E}{\text { Earnings }_{\text {this year }}}$
$g=b \times R O E$
- Therefore, $\mathrm{g}=$ plowback ratio x return on equity. In short, the growth rate of a firm is the result of how much money is retained and invested and the rate of return that it can get from investing it

Another way to look at growth is through the opportunities presented

- With all earnings paid out as dividends, earnings per share (EPS) will be equal to dividends (e.g. Earnings - dividends = retained earnings and if retained earnings is 0 , the dividends must be the same as earnings). Therefore, dividends next year are equal to EPS next year

$$
D_{1}=E P S_{1}
$$

- As the cash cow produces the same dividends each year forever, the share price of the firm is:

$$
\text { Share price }=\frac{D_{1}}{r}=\frac{E P S_{1}}{r}
$$

- This type of share is called income stock because there is no growth and there is a stable income for the shareholders each year for the foreseeable future.

Another way to look at growth is through the opportunities presented (cont'd)

- Let us assume that this is a company with a great investment opportunity - an opportunity from which it can make a return and

- This is often call a growth stock because the company can continue to invest in different opportunities and keep on increasing the value and price of its shares

Example

Aspects

Description

- Suppose a company earns $\$ 100,000$ per year forever and does not make any investment. There are 10,000 shares. If the firm's discount rate is 10%, what is the price for each share?
- Since all earnings are paid out to shareholders, the dividends per share or EPS for each year must be $\$ 100,000 / 10,000=\$ 10$
- With a discount rate of 10%, the share price must be $\$ 100$

$$
\frac{\text { DIV }_{1}}{r}=\frac{\text { EPS }_{1}}{r}=\frac{\$ 10}{0.1}=\$ 100
$$

- Now the company has the opportunity next year to spend \$100,000 to invest in a project (with no further future investment). This project will increase the earnings in each subsequent period by $\$ 21,000$, representing a 21% return. What is the share price, taking into account the growth opportunity?
- First let us calculate the NPVGO. As the firm expects to make $\$ 21,000$ each year starting the year after next (year 2), and the firm is only making the investment next year (year 1), the value of all the future expected earnings in year 1 must be:
Earnings from the opportunit y (in year 1 value) $=-\$ 100,000+\frac{\$ 21,000}{0.1}=\$ 110,000$

Example (cont'd)

Aspects

Description

- But this $\$ 110,000$ represents the value of year 1 . To determine its present value, it is necessary to discount back by one period:

$$
\text { NPVGO }=\frac{\$ 110,000}{1+10 \%}=\$ 100,000
$$

- On a per share basis, NPVGO is:

$$
\text { NPVGO per share }=\frac{\$ 100,000}{10,000 \text { shares }}=\$ 10
$$

- Adding the NPVGO to the original share price without the growth opportunity, it is possible to conclude that the share price of the company is

$$
\begin{aligned}
\text { Share price } & =\frac{\text { EPS }_{1}}{r}+\text { NPVGO }^{\prime} \\
& =\$ 100+\$ 10 \\
& =\$ 110
\end{aligned}
$$

- So, the value of the share goes up and the company grows as a result of the investment opportunity

This example shows that growth can only be achieved if a project generates a
higher return than the cost of capital

- When the return of an investment is higher than the discount rate (e.g. 21\% > 10\%)
- NPVGO = \$10 per share and share price is $\$ 110$
- The project is value-creating
- Note that the project adds value to the share because the rate of return is higher than the discount rate.
- When the return of an investment is the same as the discount rate ($10 \%=10 \%$)
- The return on the project will be

$$
-\$ 100,000+\frac{\$ 100,000 \times 10 \%}{0.1}=0
$$

- NPVGO = \$0 per share and share price stays at \$100
- The project is neither value-creating nor valuedestroying
- What the return on an investment is lower than the discount rate ($8 \%<10 \%$)
- The return on the project will be

$$
-\$ 100,000+\frac{\$ 100,000 \times 8 \%}{0.1}=-\$ 20,000
$$

- NPVGO is

$$
\frac{-\$ 20,000}{1.1}=-\$ 18,181 \text { or }-\$ 1.82 \text { per share }
$$

Topic 5: Debt and Bonds
Short- and Long-term Borrowings

There is a great variety of borrowing instruments. These instruments can differ in terms of the length of the borrowing

Topic 5: Debt and Bonds
Bond Basics and Valuation

A bond has a number of core features that distinguishes itself from equity shares

- A bond is a certificate showing that a borrower owes a specified amount
- To repay the money, the borrower has agreed to make interest and principal payments on specified dates
- To determine the price of the bond (i.e. how much the lender should pay for this lending opportunity), the lender needs to consider:

Features

Face value or Par value or principle

Description

- The time at which the bond expires and the issuer returns the amount on the face value to the borrowers
- In other words, the final repayment date
- The amount the issuer promises to pay the bondholders (investors) on the maturity date
- The promised interest payments made between the time the bond is issued and the maturity date of the bonds
- The interest rate on which the periodic interest payments are based on
- Note that this is the only role that coupon rate plays
- It is the discount rate that sets the present value of the promised bond payments equal to the current market price of the bond
- The annual return that an investor can expect to make on a bond if the investor holds the bond until maturity
- Do not confuse it with current yield (which is a bond's annual coupon divided by price)

To find out the fair value of the bond - how much a bond is worth - one has to discount all the cash flows that the debt security generates

The cash flow includes discounting all the coupons at face value at the time of maturity

- The price of the bond should be €1,240.57
- This is the price that Allianz should be paying for the bond that LVMH is issuing

Exercise

Questions

Problem 1b

Problem 1c

Copyright © 2018 Terence Tse

Description

- Compute the current price of a bond with the following features (assuming we are in 2005):
- Starts on January 2006, with a face value of $€ 100$
- Pays 5.8% in interest (coupon) per year
- Annual coupon every year for 3 years
- YTM is 4%
- What happens if the YTM (i.e. required rate of return) is now 2% ?
- What happens if the YTM (i.e. required rate of return) is now 10% ?
- What is the difference between the price and the face value of this bond if YTM is 5.8% ?

What happens if the coupon is paid semi-annually in the question above?

- Then it is necessary to proportionate the coupon rate
- Given that the coupon payment is made every 6 months, the price of the bond must be calculated this way:

What happens if the coupon is paid semi-annually in the question above? (cont'd)

Copyright © 2018 Terence Tse

- Maturity: 3 years
- Face value: £1,000
- Coupon rate: 15%
- Payment: May and November of each year
- YTM: 6\% (annual rate)

What happens if a bond does not pay any coupons at all?

- Since the coupon rate is 15% and there are 2 coupon payments every year for 3 years, the coupon
rate would be $15 \% \div 2=7.5 \%$
- Given that the YTM rate is also the annual return that investors are expecting, the YTM used for the calculation should be $6 \% \div 2$ $=3 \%$
- The price of the bond is $\$ 1,243.77$
\qquad

Why is price of the bond higher when coupons are paid semi-annually? Hint: why is the bond worth more in this case?

- Such a bond is called zerocoupon bond because it does not have any coupon

Example

- Consider a zero-coupon with 30 years until maturity and suppose the market interest rate today is 10% per year, the face value of the bond is \$1,000
- The price of the bond is

$$
P=\frac{\$ 1,000}{(1.10)^{30}}=\$ 57.31
$$

- Although the bond pays no interest directly, an investor is rewarded for the time value of money by purchasing the bond at a discount to its face value
- Treasure bills and government bonds are very often zero-coupon bonds

Since the face value and the price of the bond can be different, the relationship between the two can be described as premium, discount or at par

Aspects

Copyright © 2018 Terence Tse

Description

- When the bond's price is higher than its face value, the bond is said to sell at a premium
- An investor's return from the coupons is diminished by receiving a face value less than the price paid for the bond
- Thus, a bond trades a premium whenever YTM < coupon rate
- When the bond's price is lower than its face value, the bond is said to sell at a discount
- An investor who buys the bond will have a return both from receiving the coupons and from receiving a face value that exceeds the price paid for the bond
- As a result, its YTM > coupon rate
- When the bond's price and face value are the same, the bond is said to sell at par
- In this case, YTM = coupon rate

In addition to the aforementioned inherent characteristics, bonds distinguish themselves with other features

Features

Description

- The protection afforded to the bond holder:
- Collateral is a general term that means securities that are pledged as security for payment of debt. Commonly used to refer to any asset pledged on a debt
- Mortgages are secured by a mortgage on a real property of the borrower. The property involved is usually real estate. A blanket mortgage pledges all the real property owned by the company
- Debentures are unsecured debt for which no specific pledge of property is made (in the UK, debentures are secured obligation)
- Notes are unsecured issues with maturity of 10 years or less
- Indicates preference in position over other lenders, and debts are sometimes labelled as senior or junior to indicate seniority
- Subordinated debt must give preference to other specified creditors

In addition to the aforementioned inherent characteristics, bonds distinguish themselves with other features (cont'd)

Features

Description

- Bonds can be repaid at maturity, at which time the bondholder will receive the stated, or face, value of the bond; or they may be repaid in part or in entirely before maturity
- A protective covenant is that part of the loan agreement that limits certain actions a company might otherwise wish to take during the term of the loan
- Negative covenants: Limits or prohibits actions the company might take
- Positive covenants: Specifies an action the company agrees to take or a condition the company must abide by

In addition to the aforementioned inherent characteristics, bonds distinguish themselves with other features (cont'd)

Features
Description

- A call provision allows the company to repurchase or "call" part or all of the bond issue at stated prices over a specific period
- An agreement giving the corporation the option to repurchase a bond at a specified price prior to maturity
- Corporate bonds are usually callable
- Call premium: The amount by which the call price exceeds the par value of a bond
- Deferred call provision: A call provision prohibiting the company from redeeming a bond prior to a certain date
- Call-protected bond: A bond that, during a certain period, cannot be redeemed by the issuer

Bonds are often quoted with the key information

Name

[^4]
But how is yield determined?

- Central banks can use monetary yield to manage the economy by increasing or decreasing interest rates - the base rate
- They can lower interest rates to stimulate economic activities while raise interest rates to 'cool down' the economy
- To determine what the rate of return debt investors required, we need to understand what their expectations of the future are
- To do so, we can compare different bonds with the same risk characteristics but differ in terms of maturities (also called term structure of interest rates)

How is yield determined? (cont'd)

- Consider 4 zerocoupon bonds that are the same in all aspects with the only difference that they have different maturity
- Not surprisingly, the bond with the longer maturity will have to provide a higher return to the investors through prices

Face value SFr. 1,000

Maturity (years)	Current price
1	SFr. 952.38
2	SFr. 890.00
3	SFr. 816.30
4	SFr. 735.03

- To calculate the YTM for the 2-year zerocoupon bond, $(1,000 / 890.00)^{1 / 2-1}=$ 0.06
- Hence, if we calculate all 4 bonds:

Maturity (years)	YTM
1	5.00%
2	6.00%
3	7.00%
4	8.00%

- Suppose we want to know the YTM for a 10\% coupon bond with a 3year maturity and face value of SFr. 1,000
- Using the yields calculated from the prices of the zerocoupon bonds above, it can
first calculate the bond prices, which is,
$\frac{100}{1.05}+\frac{100}{1.06^{2}}+\frac{(100+1,000)}{1.07^{3}}$ $=$ SFr. 1,082.17

And then, calculate the YTM, which is,
$1,082.17=\frac{100}{1+\text { YTM }}+\frac{100}{\left(1+\text { YTM }^{2}\right.}+\frac{1,100}{\left(1+\text { YTM }^{3}\right.}$
$\mathrm{YTM}=6.88 \%$

- Hence, it is possible to use the yields of different zerocoupon bonds to derive the YTM of many bonds
- Indeed, it is possible to see that many bonds are simply a combination of different zerocoupon bonds

With the prices and subsequently the YTM of zero-coupon bonds of various maturities, it is possible to plot a yield curve

- Let us say we have 4 zerocoupon bonds with maturity of 1, 2, 3 and 10 years
- Otherwise, they are the same in all aspects and have a face value of $€ 1,000$
- With the current prices these bonds are on offer, it is possible to calculate the YTM
- Using the calculated YTMs, we can create a yield curve

- Yield curve can allow us to gain insights into the market

Yield curves are usually upward sloping...

US Treasury bills, $16^{\text {th }}$ September 2008

- This is the most common type of yield curve
- It shows that investors anticipate increases in interest rates, suggesting that the market holds a bullish view of the economy

The graph is sourced from Bloomberg.com
. but they can also come in the form of downward sloping

- The UK government bond yield curve looks very different
- It has a humped curve that shows that in a shortrun, the yield is going to drop and will only start increasing in 4 years time

UK government bonds, $\mathbf{1 6}^{\text {th }}$ September 2008

- If interest rates are expected to fall in the future, then investors anticipate that the economy will not be doing as well as now
- An inverted yield curve therefore shows a decline in long-term rates, which tends to be the case when the economy slows down

The price of the bond is subject to changes in YTM

- Hence, there is a risk that the value of the bond would go up or down as a result of interest rate change
- Mathematically, this can be easily demonstrated: as the 'discount rate' gets smaller, the output gets bigger, and vice versa
- But, conceptually, why is this the case?

The yield, and in turn the price of the bond, depends on the different types of risk that a bond is exposed to

(1) The higher the default risk, the higher the required rate of return demanded by investors

(1) The higher the default risk, the higher the required rate of return demanded by investors (cont'd)

Source: Standard and Poor's (2009) Default, Transition, and Recovery: 2008 Annual Global Corporate Default Study And Rating Transitions
(1) The higher the default risk, the higher the required rate of return demanded by investors (cont'd)

Source: Standard and Poor's 2002

- In an illiquid market, an investor may have difficulty selling an asset at a reasonable price, if at all
- Liquidity risk also applies if an investor can only sell part of the asset held
- Larger markets generally have greater liquidity than smaller markets
(3) Bond holders are exposed to regulatory risk if the value of the bonds they hold are subject to uncertainties

Example

- Utility companies face a significant amount of regulation in the way they operate, including the quality of infrastructure and the amount that can be charged to customers
- Therefore, the regulatory risk that investors in these companies are exposed to can be a change in the fees utilities and may make operating the business more difficult
(4) There are 2 ways the interest rate can impact upon bond pricing. The first one is maturity

Example 1

Coupon rate: All bonds - 10\%
YTM: 10\%
Interest rate: 10\%
$\left.\begin{array}{lccccccc}\text { Period } & \text { Price } & \text { Year 1 } & \text { Year 2 } & \text { Year 3 } & \text { Year 4 } \\ \hline \text { Bond A } & € 100.00 & € & 110 & & & & \\ \text { Bond B } & € 100.00 & € & 10 & € & 10 & € & 110 \\ \\ \text { Bond C } & € 100.00 & € & 10 & € & 10 & € & 10\end{array}\right\}$

If the interest rate moves by:

	Price	Change
Bond A	$€ 98.21$	-1.79%
Bond B	$€ 95.20$	-4.80%
Bond C	$€ 93.93$	-6.07%
	Price	Change
Bond A	$€ 101.85$	1.85%
Bond B	$€ 105.15$	5.15%
Bond C	$€ 106.62$	6.62%

(4) There are 2 ways the interest rate can impact upon bond pricing. The first one is maturity (cont'd)

Example 1

- Bond C, which has the longest maturity, has a higher exposure to interest rate risk than Bond B which is higher than Bond A
- In other words, bonds with longer maturity have a higher sensitivity to interest rate
(4) There are 2 ways the interest rate can impact upon bond pricing. The first one is maturity (cont'd)
- Let us look
at another

Example 2
example with both bonds G and H having a coupon rate of 10% with a face value of $£ 1,000$

- The difference lies in the length of time to maturity: Bond H is 30 years while Bond G is 1 year
- If we plot the graph

- Bond H is exposed to much higher interest rate risk than Bond G, as evident from the slopes of these 2 bonds
- The slope of the 30 -year bond (H) is much steeper than that of the 1-year one (G)
- For this longer-life bond, a relatively small change in the interest rate will lead to a more substantial change in the bond value
- In contrast, the 1year bond is relatively insensitive to interest changes
(4) There are 2 ways the interest rate can impact upon bond pricing. The first one is maturity (cont'd)

- Therefore, all things equal, the longer the maturity, the greater the interest rate risk
- One can also think that because a bond is discounted over a shorter period of time, the PV of a cash flow that will be received in the near future is less dramatically affected by interest rates than a cash flow in the distant future
(4) The second one is coupon rate

Example

Coupon rate: Bond X-0\% and Bond Y-10\%
YTM: $\quad 10 \%$
Interest rate: 10%

Period	Price	Year 1	Year 2	Year 3	Year 4			
Bond X	$€ 68.30$	$€$	-	$€$	-	$€$	-	$€$
Bond Y	$€ 100.00$	$€$	10	$€$	10	$€$	10	$€$

If the interest rate moves by:

Price Change

- The change in the price of the bond with the lower coupon (Bond X) is greater than that of the one with a higher coupon rate (Bond Y) when interest rate goes up or down
- One can think of it this way: a lower coupon rate will give a lot more room for the interest rate to drop before interest rate is equal to the coupon rate

(4) The second one is coupon rate (cont'd)

- Therefore, all things equal, the lower the coupon rate, the greater the interest rate risk
- One can also think that if two bonds have the same maturity, then the value of the one with the lower coupon is proportionately more dependent on the face amount to be received at maturity
- As a result, its value will fluctuate interest rates change
- In other words, the bond with the higher coupon has a larger cash flow early in its life, so its value is less sensitive to changes in the interest rate
- Duration basically measures how quickly one will recover the initial investment in a bond on a time value of money basis
- This is because bonds with coupons paid out before maturity allow the holders to recuperate their investment sooner than the stated maturity
- Duration (D) can be calculated using the following formula:
$D=\sum_{t} \frac{P V\left(C_{t}\right)}{P} \times t$

Where $\mathrm{PV}\left(\mathrm{C}_{\mathrm{t}}\right)$ is $\mathrm{CF}_{\mathrm{t}} /(1+\mathrm{YTM}), \mathrm{P}$ is the price of the bond and t is the time

- It looks more daunting than it really is
(4) Duration measures the weighted-average time to the maturity of the bond, using present value of its cash flows as weights
(a) A zero-coupon bond with only 1 payment

(b) A bond with multiple payments

- Notice that the zerocoupon bond has a higher duration than a bond with multiple coupons
- This is because the some of the cash flows can be recovered before maturity
- This effectively means that the maturity of the bond in Figure b) is shorter in terms of time value of money
- In other words, the duration of the bond is shorter for the bond with coupon than that without
(4) Duration measures the weighted-average time to the maturity of the bond, using present value of its cash flows as weights (cont'd)

Note that in year 1, you capture $£ 38.1$ of $£ 981.41$ or 3.88% of the cash flow that the bond can generate with the remaining 96.12% in year 2 when the bond

Example 1

- Consider a bond with 2 years to maturity, a face value of $\$ 1,000$, a 4% coupon and YTM of 5%

- Duration is calculated by dividing the total $\mathrm{PV}\left(\mathrm{C}_{\mathrm{t}}\right) \mathrm{x}$ t by the price of the bond or $\frac{1,924.72}{981.41}$

$$
=1.96
$$

- Although the maturity of this bond is 2 years, its duration or average life in terms of a cash flow sense is only 1.96 years
- On the time value of money basis, the initial investment in the bond is recovered after 1.96 years
- Duration, in other words, describes the effective maturity of a bond
- After that time, the investor earns a profit on the bond
(4) Duration measures the weighted-average time to the maturity of the bond, using present value of its cash flows as weights (cont'd)

Example 2	Calculation of bond price			
	t (years)	C_{+}		$\mathrm{V}\left(\mathrm{C}_{+}\right)$
- Consider	1	£	£	
another bond	2	£ 1,000	£	907.03
with 2 years to to maturity, a	Price of the bond			907.03
face value of	Calculation of duration			
\$1,000, no coupon and	\underline{t} (years) $\mathrm{PV}\left(\mathrm{C}_{\mathrm{t}}\right) \times \mathrm{t}$			
YTM of 5\%	1	-		
	2	1,814.06		
	Total	1,814.06		

- Duration is calculated by dividing the total $P V\left(C_{t}\right) x t$ by the price of the bond or

$$
\begin{aligned}
& \frac{1,814.06}{907.03} \\
& =2.00
\end{aligned}
$$

- Since there is no coupon, investors of this bond will have to wait until maturity in order to capture any return of the bond

By comparing the duration of bonds, it is possible to see that a bond with a higher duration has higher \% price changes than a bond with a lower duration when interest rate changes

Goingback totheexampleusedearlier to	Period	Year 1	Year 2	Year 3	Year 4	Price
	Bond X	$€$		$€$	$€ 100$	$€ 68.30$
	Bond Y	$€ 10$	$€ \quad 10$	$€ \quad 10$	$€ 110$	$€ 100.00$
	Period	Year 1	Year 2	Year 3	Year 4	
	Bond X	$€$	$€$	$€$	$€ 100$	
	PV of payment	-			68.30	
	Relative value	-	-	-	1.00	
	Weight of maturity	-	-	-	4.00	
	Duration (in years)		4.00			
	Period	Year 1	Year 2	Year 3	Year 4	
	Bond Y	€ 10	$€ 10$	$€ 10$	$€ 110$	
changes	PV of payment	9.09	8.26	7.51	75.13	
	Relative value	0.09	0.08	0.08	0.75	
	Weight of maturity	0.09	0.17	0.23	3.01	
	Duration (in years)		3.49			

- Bond X with no coupon must have a duration of 4.00 years
- In contrast, Bond Y with a 10\% coupon rate has a lower duration (3.49 years)
- In other words, Bond Y has a shorter effective maturity than Bond X
- Hence, bonds with higher durations are more sensitive to interest rate changes
- In other words, duration can show the sensitivity of a bond to interest rate risk

Cash flows are a crucial component for capital budgeting

Premise

- At the beginning of the course, we saw that capital budgeting - the process of identifying, planning and managing a firm's long-term investments is one of the 3 key concerns in corporate finance

Examples

- In December 2001, Peugeot announced the project of building a new manufacturing plant in Kolin, Czech Republic. This represents a $€ 1.5$ billion investment partnered with Toyota. The plant is expected to be operational in 2005 to produce 300,000 vehicles a year
- Curitel Mobile, a specialist in the production of components for small electronic devices, is considering purchasing a new machine. This piece of equipment will replace the existing one to allow increase in production and decrease in marginal production cost
- To evaluate whether a project is value-creating, we can discount cash flows
- So, we need to understand what cash flows are and how they are determined

But first, it is necessary to note that cash flows and earnings are different ...

Premise

- Financial managers must be concerned not only with how much cash they expect to receive, but also with when they expect to receive it and how likely they are to receive it
- Evaluating the size, timing, and risk of future cash flows is the essence of capital budgeting
- But it must be noted that cash flows are different from earnings (accounting profits)
- Cash flow is a term that refers to the amount of cash being received and spent by a business during a defined period of time, sometimes tied to a specific project
- It is necessary to note that corporate finance generally focuses on cash flows, whereas financial accounting generally stresses income or earnings
- Hence, when performing capital budgeting calculation, always discount cash flows, and never earnings
- At the end of the day, investors care about the ability of companies to generate cash for profit and to keep the company/project going
. because cash flows: 1) take into account net investment ...

Example

- While the future earnings for these 2 firms are identical...

Earnings
GL
Songsam
Cash flows

GL

Earnings
Net investment Cash flow

At 10% discount rate, PV of cash flows is $£ 311$
Songsam

Earnings
Net investment
Cash flow

At 10% discount rate, PV of cash flows is

- In this case, we can see that net investment makes the cash flows from the 2 firms different

... 2) do not count depreciation as monetary flow ...

Financial analysts do not count depreciation and amortisation as flow

	Year			
	0	1		2
Cash flow		£ 1,500	£	500
Cash outlay	£ 2,000			
NPV@10\%	(£ 223)			

Accountants, on the other hand, treat depreciation and amortisation as flow

Cash flow	$£ 1,500$	$£$
Depreciation	1,000	500
Accounting income	500	

- Note that the results are different
- There are 2 important conclusions

1. Depreciation and amortisation are not 'taken out' when calculating cash flow in corporate finance. Therefore, when converting from earnings to cash flows, D\&A must be 'added back'
2. Make sure cash flows are counted only when they occur. Rather than spreading the cash outlay across the years, cash flow represents the money is spent/gained in the time period

NPV@10\% £ 41

... and 3) include change in working capital

- Current assets mostly include:
- Accounts receivable (sales are made now but customers pay their bills later)
- Inventories (depending on the products and inventory management)
- Current liabilities mostly include:
- Accounts payable (buy now from the suppliers and pay them later)
- It must be noted that the shorter period of accounts receivable, the better for the firm because less cash is tied-up. The same go with inventories. The lower the level of inventories, the less cash is tied up
- On the other hand, it is better cash-wise for a firm to have a high level of accounts payable
- As detailed below, it is the change in working capital from one year to another that impacts the cash flow calculation
- It must be note that technically the difference between the current assets and current liabilities should be called net working capital because there is a subtraction operation. However, in practice, people use the term net working capital and simply working capital interchangeably

Before putting a cash flow analysis together, let us examine five considerations when determining cash flows

Aspects

Description

- Incremental cash flows are the changes in the firm's cash flows that occur as a direct consequence of accepting the project
- In other words, we are interested in the difference between the cash flows of the firm with the project and the cash flows of the firm without the project
- Incidental effects are spillover or side effects that a new project can cause on the company's future cash flows
- Erosion occurs when a new project reduces the sales, and hence, the cash flows of existing projects
- Synergy occurs when a new project increases the cash flows of existing projects
- A cost that has already occurred. Given that sunk costs are in the past, they cannot be changed by the decision to accept or reject a project

Before putting a cash flow analysis together, let us examine five considerations when determining cash flows (cont'd)

Aspects

Description

- If an asset is used in a new project, potential revenues from alternative uses are lost. These lost revenues can be meaningfully viewed as costs or opportunity costs because, by taking up the project, the firm foregoes other opportunities for using the assets
- Frequently, a particular expenditure benefits a number of projects. Accountants allocate this cost across the different projects when determining income
- However, for capital budgeting purposes, this allocated cost should be viewed as a cash outflow of a project only if it is an incremental cost of the project

There are many methods to calculate cash flow. But we only focus on the method that accrues all value to both the share- and debt-holders of the firm

- There are many ways to calculate cash flows
- For instance, there is a method that considers the cash flows going to equity shareholders only and there is another that focuses on the cash flows to the firm as a whole (hence, all security holders)
- In this course, we are only concerned with the latter method of cash flow calculation named Free cash flow to firm or FCFF
- But regardless of the methods chosen, cash flows are made up of 3 major components and briefly discussed above

The basic rule is that to calculate the cash flow for a specific time period, you must consider the following three 3 major components that may occur in a single period

Cash flow from operations is the amount of income produced by a project

Components

Description

- This refers to the cash that a project generates
- It takes into account all the cash inflows, such as revenues, outflows, costs and taxes
- To calculate this, we will first calculate net operating profit after taxes (or NOPAT):

$$
N O P A T=E B I T \times(1-t)
$$

- Also, as discussed above, since neither depreciation (D) nor amortisation (A) are cash items, both of them must be added back to complete the calculation
- Therefore, the calculation of cash flow from operations (or CFO) can be:

$$
C F O=N O P A T+D+A
$$

- Depreciation can be calculated by either the straight-line or accelerated method

Any major expenditures, whether it is cash inflow or outflow, impact on the cash flow of the project/firm

Components
Description

- The investments that are made at any time during the project, such as investments in plants, equipment, R\&D, marketing, etc.
- In this case, capital investment is negative cash flow because it represents a cash outflow from a firm
- However, there are occasions in which a firm/project receive cash. For example, if an asset (e.g. a machine) can be sold when the project winds down or is completed (i.e. salvage), the sales price represents a positive cash flow to a firm
- In this case, if a machine is sold at the end of a project, the money from selling it will represent a cash inflow

Investment in working capital takes into account the short-term financing needs

Components

Investment in working capital

Description

- It is important to stress that it is not the absolute amount of working capital that is important here. Instead, it is the change in working capital between 2 periods that really matters
- Think about it this way: if this year you need more working capital, you should consider only the increase between the previous year and this year. Conversely, if you need less working capital for this period, you only count the amount decreased this year
- In the following example, when you are considering the accounts receivable (A/R) in Year 2, the impact to cash flow is not $\$ 910 \mathrm{~m}$ because it is the absolute amount of A / R for Year 2. Instead, you should count only the increase from year 1 to year 2, which is \$30m

Investment in working capital takes into account the short-term financing needs (cont'd)

Components

Investment in working capital

Description

- Following the same line of thinking, when calculating accounts payable (A/P), it should be the change in A/P (\$55m) and not the A/P for Year 2 ($\$ 605 \mathrm{~m}$) that you should be counting as part of the cash flow calculation that year
- Not shown here, the same logic applies to inventory and any other working capital components
- Working capital is then calculated by totalling all the cash inflow and outflow. In this case, A / R is an inflow whereas A / P is an outflow
- Therefore, the change in working capital ($\triangle \mathrm{WC})$ for Year 2 is \$25m
- This can be shown by the following formula:

Change in current assets

- Change in current liabilities s

Change in working capital

- So, when $\Delta \mathrm{WC}$ is negative, it releases tied-up cash and increases the cash flow of the firm. If a firm has a positive $\triangle W C$, more cash will be tied-up and decreases the cash flow of the firm

The key to "getting it right" with the calculation of free cash flow is to ask yourself whether the cash flow represents inflow or outflow

Example of building a free cash flow analysis

Aspect

Description

- You just discovered that there is a market for mini plastic Big Ben models and this market will last for 3 years. You also have the following project to manufacture them with the following details:
- Sales price = £5 per unit
- Number of units produced and sold per annum $=10,000$
- Cost of Goods Sold = £3 per unit
- $S G \& A=£ 5,000$ per annum
- Initial outlay = £21,000
- Depreciation = straight-line
- Working capital = 20% of annual sales
- Tax rate is 34%
- Required rate of return = 20\%
- Is this project worth undertaking?

Example of building a free cash flow analysis (cont'd)

Aspect

Description

- There are 5 steps to solve this problem
(1)Calculating the cash flow from operations for each year

Sales	£ $\mathbf{5 0 , 0 0 0}$
COGS	$(30,000)$
SG\&A	$(5,000)$
EBITDA	15,000

Depreciation $\quad(7,000)$
EBIT 8,000

NOPAT 5,280
Add back: Depreciation 7,000
CFO
£ 12,280
(2)Calculation of capex
Net investment

$$
\frac{0}{(£ 21,000)} \frac{\text { Year }}{\frac{1}{2}} \frac{}{2} \frac{3}{2}
$$

Example of building a free cash flow analysis (cont'd)

Aspect

Description

(3) Calculation of the change in working capital
$\frac{0}{(£ 10,000)} \frac{\text { Year }}{\frac{1}{-}} \frac{\frac{2}{-}}{\frac{3}{£ 10,000}}$

- Since there are only changes in the working capital in Year 0 and Year 3, the change in working capital in years is both 1 and 2 is zero
(4) Calculation of free cash flow

culation of free cash flow		Year		
	0	1	2	3
CFO	£ -	£ 12,280	£ 12,280	£ 12,280
Capex	$(21,000)$	-		-
$\Delta \mathrm{WC}$	$(10,000)$	-	-	10,000
Free cash flow	($£ 31,000$)	£ 12,280	£ 12,280	£ 22,280

(5) Calculation of NPV

$$
\begin{aligned}
\mathrm{NPV} & =-£ 31,000+\frac{£ 12,280}{1.2}+\frac{£ 12,280}{1.2^{2}}+\frac{£ 22,280}{1.2^{3}} \\
& =£ 655
\end{aligned}
$$

- Since NPV > 0, this project should be accepted

Exercise

Aspect

Description

- Krekonite is considering a 3-year project that provides €200,000 per year. It has an annual cost of goods sold of $€ 125,000$ and annual SG\&A of $€ 12,000$. It uses the straight-line depreciation method. The initial working capital is $€ 20,000$ and will remain unchanged over the life of the project. If tax rate is 34%, initial investment is $€ 90,000$ and cost of capital is 20%, is this project worth undertaking?

When comparing two projects with unequal lifespan, you can use equivalent

 annual costAspect

Description

- Suppose a firm must choose between 2 machines, A and B. Both machines can do the same job, but they have different operating costs. They also have different operating lives
- A simple PV calculation suggests taking the machine with the costs that have lowest PV. However, this might be a mistake because machine A, which has a lower cost, may need to be replaced before machine B
- So, how do you solve this problem? The answer is to transform an investment today into an equivalent stream from cash flows - hence the name equivalent annual cost
- Equivalent annual cost is therefore the cost per year of owning and operating an asset over its entire lifespan
- The formula for calculating equivalent annual cost:

$$
\begin{aligned}
& \text { Equivalent annual cost }=\frac{P V \text { of costs }}{\text { Annuity factor }} \\
& P V \text { of an annuity }=C \times\left[\frac{1}{r}-\frac{1}{r(1+r)^{t}}\right]
\end{aligned}
$$

When comparing two projects with unequal lifespan, you can use equivalent annual cost (cont'd)

Example

- Consider the following two machines that can do exactly the same job.
- Which one is the cheapest to own?

When comparing two projects with unequal lifespan, you can use equivalent annual cost (cont'd)

	Costs (£)				
Machine	Year 0	Year 1	Year 2	Year 3	PV at 10\%
Machine A	15,000	4,000	4,000	4,000	24,947
Equivalent		10,800	10,800	10,800	24,947
annual cost					

*The annuity factor in this case is 2.49

	Costs (£)				
Machine	Year 0	Year 1	Year 2	Year 3	PV at 10\%
Machine B	10,000	6,000	6,000		20,413
Equivalent		12,223	12,223	20,413	
annual cost					

- Machine A is better than machine B because it costs less on a per year basis to own and operate
*The annuity factor in this case is 1.67

NPV is considered to be an excellent tool for deciding whether an investment/project/asset should be accepted. This is because it takes into account...

Reasons

Description

- NPV considers the fact that a pound in the future is worth less than a pound today and that distant cash flow is worth less
- NPV relies on DCF, which in turn, concentrates on the forecasted cash flow from a project and the (opportunity) cost of capital
- This is important because it focuses only on cash flow (which can increase shareholders' value) and not on accounting profit
- Since PV are all measured in today's pounds, they can be added up
- This has an important implication because if you have two projects, they can be combined
- NPV of Project A and Project $B=N P V(\operatorname{Project} A)+N P V$ (Project B)

NPV is considered to be an excellent tool for deciding whether an investment/project/asset should be accepted. This is because it takes into account... (cont'd)

Reasons

Description

- The NPV approach allows the investors to know when they will be able to recuperate their investments
- The NPV approach enables one to learn how much value is created (or destroyed) as a result of undertaking a project
- This is important when there are 2 or more projects

Example

Aspects

Description

- A pharmaceutical company wants to develop a new drug. The company envisages two potential strategies:

1. Invest $\$ 1$ billion now and sell the drugs starting next year. In this case, the company will receive $\$ 500$ million, $\$ 400$ million and \$300 million in the first, second and third year, respectively
2. Invest $\$ 200$ million now and in the first year to develop the drug at a slower pace. The company will receive $\$ 300$ million in each of the second year and the third year

- Which is a better strategy if the discount rate is 5% ?
- By calculating the cash flows:

(in € $¢ 000 \mathrm{~s}$)		Year 0	Year 1	Year 2	Year 3
Strategy 1	Cash flows	-1,000	500	400	300
	DCF	-1,000	476	363	259
Strategy 2	Cash flows	-200	-200	300	300
	DCF	-200	-190	272	259
NPV ${ }_{\text {Strategy }}{ }_{1}=$			$€ 98.2$		
NPV Strategy $2=$			$€ 140.8$		

- Strategy 2 is therefore a better option because it creates more value

In addition to NPV, there are several alternatives to approach investment decisions. One of them is Payback

Aspects

Description

- The payback rule is the length of time a project needs to recover an investment (i.e. "how long will it take to get my money back?")
- The rule states that a project should be accepted if its payback period is less than a pre-determined cut-off period
- An investment in a new machine will cost you $£ 50,000$. Once installed, you will be able to save $£ 20,000$ in the first year, $£ 30,000$ in the second and $£ 10,000$ for the subsequent years. Should you accept or reject this investment using the payback method?
- You will be able to recover the entire investment in 2 years (i.e. the project "pays for itself" in two years)
- In this case, $£ 20,000$ in year 1 and $£ 30,000$ in year $2=£ 50,000$, which is exactly the amount of the initial cash outlay
- If your cut-off period is 2 years or greater, then this project should be accepted (i.e. this is a good project)
- Conversely, if your cut-off period is under 2 years, you should not accept it
- It is necessary to note that time value of money is not considered here
Copyright © 2018 Terence Tse

While the payback method is easy to use, it can lead to poor decisions

While the payback method is easy to use, it can lead to poor decisions (cont'd)

While the payback method is easy to use, it can lead to poor decisions (cont'd)

Aspects

Description

- Is easy to understand
- Allows efficiency in making decisions
- Adjusts for the uncertainty incurred by the later cash flows
- Favours liquidity
- Comes in handy when it is difficult to estimate the cost of capital
- Ignores time value of money
- Requires an arbitrary cut-off point
- Ignores cash flows beyond the cut-off date
- Is biased against long-term projects, such as R\&D
- Arguably, you can use the payback method and taking time value of money into consideration to make the method more rigorous. But it still suffers from neglecting the cash flows after the cut-off date (see project A in the previous slide)

Another investment decision criterion is Internal Rate of Return (IRR)

Aspect

Description

- With this method, we try to find a single rate of return that summarises the merits of a project
- This rate of return should be an 'internal' rate in the sense that it depends only on the cash flows of a particular investment, not on rates offered elsewhere
- The IRR is the discount rate at which a NPV calculation will equal to zero
- Hence, an investment should be accepted if the IRR exceeds the required return. It should be rejected if the IRR is smaller than the required return

Another investment decision criterion is Internal Rate of Return (IRR) (cont'd)

Aspect

Description

- We covered this question in our first session. You are thinking about recommending your client invest in a piece of land that costs $£ 85,000$. You are certain that next year the land will be worth $£ 91,000$, representing a sure gain of $£ 6,000$. Given the discount rate is 10%, should your client undertake this investment?
- As opposed to calculating the NPV, some of you looked the rate of return instead. Specifically,

$$
N P V=0=-£ 85,000+\frac{£ 91,000}{(1+\text { IRR })}
$$

$85,000+85,000 \times \mathrm{IRR}=91,000$

$$
\begin{aligned}
\mathrm{IRR} & =\frac{6,000}{85,000} \\
& =7.06 \%
\end{aligned}
$$

- Since your cost of capital (or required return) is 10%, it is greater than the internal rate of return of the project of 7.06%. Therefore, the project should be rejected

Another investment decision criterion is Internal Rate of Return (IRR) (cont'd)

Another investment decision criterion is Internal Rate of Return (IRR) (cont'd)

- Given that IRR is the rate at which NPV equals 0 , it is the point where NPV turns from positive to negative
- The example can be graphed as such:
- As displayed in the diagram, if the cost of capital is lower than the IRR of 13.1%, NPV will be positive
- Indeed, the lower the cost of capital, the higher the NPV
- Conversely, if the cost of capital is higher than the IRR (in English, when the project cannot generate more return than what is required), the project is valuedestroying
- Note that this implies that NPV and IRR are negatively related

Unfortunately, IRR has several pitfalls. One of the them is that there can be more than one rate of return

Unfortunately, IRR has several pitfalls. One of the them is that there can be more than one rate of return (cont'd)

Project	Cash flows					
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
K	(£ 22)	£ 15	£ 15	£ 15	£ 15	(£ 40)

Unfortunately, IRR has several pitfalls. One of the them is that there can be more than one rate of return (cont'd)

The second pitfall is that it may lead to wrong investment decision

The second pitfall is that it may lead to wrong investment decision (cont'd)

- The problem here is that when IRR is above 12.26%, Project N will have a higher NPV than Project O
- So, which project to accept?
- The answer is the one that creates the most value (NPV) and not necessary the one with the highest rate of return (IRR)

The second pitfall is that it may lead to wrong investment decision (cont'd)

Case 2

- A CEO receives \$1 million upfront if he agrees to write a book about his experiences
- He estimates that it will take him 3 years to write the book, which will cause him to forgo alternative sources of income amounting to \$500,000 a year
- The estimated cost of capital is \%10
- Hence,

Cash flows (000s)

| Year 0 | Year 1 | Year 2 | Year 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\$ 1,000$ | $(\$$ | $500)\left(\begin{array}{llll}\$ & 500\end{array}\right)\left(\begin{array}{ll}\$ & 500\end{array}\right)$ | |

- The IRR would be 23.38\%
- Since it is larger than the cost of capital of 10%, then this book deal is a good deal
- However, if NPV is calculated, then the answer would be - $\$ 243,426$, which means this is not a good deal

The second pitfall is that it may lead to wrong investment decision (cont'd)

- Indeed, it can be
seen that NPV is
only positive if the
cost of capital is
greater than the IRR
of 23.8%
- The problem is that
by getting the cash
upfront and the
costs incurred later,
it is as if receiving
cash today in
exchange for a
future liability
- In other words, it is
akin to financing
- Also, the graph
implies that NPV
and IRR are
positively related
when they should be
negatively related
- Indeed, it can be seen that NPV is only positive if the cost of capital is greater than the IRR of 23.8\%
- The problem is that by getting the cash upfront and the costs incurred later, it is as if receiving cash today in exchange for a future liability
- In other words, it is akin to financing
- Also, the graph implies that NPV and IRR are positively related when they should be negatively related

The third pitfall with IRR is that at times, it is impossible to determine the IRR

- It is simply impossible to calculate the IRR (because NPV will always be negative)

Redeeming qualities and pitfalls of IRR

Aspects

Description

- Is a simple way of communicating information about a proposal
- Is closely related to NPV, often leading to identical decisions
- Produces multiple answers with non-conventional cash flows
- Leads to incorrect decisions when comparing mutually exclusive investments
- Fails to determine the IRR

Economic value added (EVA) is an estimate of true economic profit as it takes into consideration of the charges of the capital invested in the firm

- EVA makes the cost of capital visible to operating managers - Managers can no longer therefore make money without taking into account the resources used while making the money	EVA $=$ NOPAT - Capital charge Cost of capital x Capital employed (which is the capital that is invested in a project or C_{0})	- If $\mathrm{EVA}>0$, it can be said that value is created - In short, it is the profits or returns the company must generate so as to satisfy all the investors who have 'rented' their capital to the company - In other words, the cash generated is covering the cost of capital

Economic value added (EVA) is an estimate of true economic profit as it takes into consideration the charges of the capital invested in the firm (cont'd)

So far, we have assumed that a firm has all the necessary capital to invest in value-creating projects. Nevertheless, our decision-making capacity will be reduced if capital is not always available

Aspects

Description

- Limitations on the investment programme that prevent a company from undertaking all projects
- Such restrictions are either due to the shortage of funds (hard rationing) or deliberate actions to limit the funds available for investments (soft rationing)
- You only have $£ 20$. Which of the following projects can give you the highest possible NPV within the budget?

	Cash flows				
Project	Year 0	Year 1	Year 2	PV at 10\%	NPV
Q	$(£ 3)$	$£ 2.2$	$£ 2.4$	$£ 4$	$£ 1$
R	$(£ 5)$	$£ 2.2$	$£ 4.8$		$£ 6$
S	$(£ 7)$	$£ 6.6$	$£ 4.8$	$£ 10$	$£ 1$
T	$(£ 6)$	$£ 3.3$	$£ 6.1$	$£ 8$	$£ 2$
U	$(£ 4)$	$£ 1.1$	$£ 4.8$	$£ 5$	$£ 1$

Profitability index serves as an useful investment decision method when capital is rationed

Aspect
Description

- Pick the projects that give the highest NPV on a per pound basis of investment
- This is called the profitability index (PI) and can be calculated using the following formula:

$$
\text { Profitability index }=\frac{\text { NPV }}{\text { Initial investment }}
$$

- The profitability index for each of these projects are therefore:

Project	PV	NPV	Initial investment	Profitability index
Q	$£ 4$	$£ 1$	$£ 3$	$1 / 3=0.33$
R	$£ 6$	$£ 1$	$£ 5$	$1 / 5=0.20$
S	$£ 10$	$£ 3$	$£ 7$	$3 / 7=0.43$
T	$£ 8$	$£ 2$	$£ 6$	$2 / 6=0.33$
U	$£ 5$	$£ 1$	$£ 4$	$1 / 4=0.25$

But profitability index is not without problem

Aspects
Description

- The profitability index method breaks down when there is more than one resource to be rationed
- You can only raise $£ 10$ million for investment in each of years 0 and 1. Which project(s) would you accept?

Cash flows (millions)					
Project	Year 0	Year 1	Year 2	NPV at	Profitability
10\%	index				
V	$(£ 10)$	$£ 30$	$£ 5$	$£ 21$	2.1
W	$(£ 5)$	$£ 5$	$£ 20$	$£ 16$	3.2
X	$(£ 5)$	$£ 5$	$£ 15$	$£ 12$	2.4
Y	$(£ 0)$	$(£ 40)$	$£ 60$	$£ 13$	0.3

While the different investment criteria help you make appropriate decisions, we can engage in at least 3 activities to make us more informed. They include sensitivity analysis, break-even analysis and scenario analysis

Activities

2
Break-even analysis

(3)

Scenario analysis

Description

- To determine the percentage change of NPV as a result of a change in an 'input' variable (e.g. revenue)
- In other words, it looks at these magnitudes that the NPV would change when an 'input' variable goes up or down
- To determine the minimum value to have a positive NPV
- In a nutshell, it looks at what the 'floor' or 'ceiling' is for a variable (e.g. minimum revenue ['floor'] or per unit cost ['ceiling']) in order to maintain a positive NPV
- To attempt to develop possible scenarios as a result of changes of various inputs
- In short, it looks at different possibilities of how and what NPV a project can generate
- All 3 mechanisms allow investors to examine the risk to which they are exposed

Let us use an example to illustrate these 3 activities

Sensitivity analysis can be used to determine the percentage change of NPV as a result of a change in an 'input' variable

- In this case, we would like to see what happens to the NPV if the potential revenue is only €600m instead of €700m

Income statement
Potential revenue
Variable costs
Fixed costs
Depreciation
EBIT
Tax @ 34\%
Net income
Cash flow analysis
NOPAT
1. CFO
2. CAPEX
3. \triangle NWC
Cash flows
DCF

Year 0 Year 1 Year 2 Year 3 Year 4
NPV \quad € 134
(1) Sensitivity analysis can be used to determine the percentage change of NPV as a result of a change in an 'input' variable (cont'd)

- In other words, a 1\% drop in revenue equals to a 4.25% decrease in NPV
- Break-even is about changing variables such as revenue, volume, price, costs, so that $N P V=0$
- It is then possible to know the minimum revenue, volume, the highest costs acceptable, etc.
- In this case, we would like to know the minimum cash flow required to generate a zero NPV

$$
\begin{aligned}
\mathrm{NPV} & =0=-160+\sum_{\mathrm{t}=1}^{4} \frac{\mathrm{CF}}{(1+0.1)^{\mathrm{t}}} \\
\mathrm{CF} & =50.5
\end{aligned}
$$

- The investor will have to have a cash flow of $€ 50.5 \mathrm{~m}$ or more each year in order to make the project worthwhile
- In this way, the manager will be able to identify the minimum, say, revenue, so as to achieve a positive NPV

(3) Scenario analysis makes is possible to develop various potential outcomes as a result of changes in various inputs

- The value of scenario analysis is that investors can anticipate how different figures or input would/could change and how the changes could affect the NPV
- To do so, we can build different "cases"
- Best case: In the next 4 years, winter would be very cold and this would lead to a strong demand for the drug. In fact, the demand would outstrip supply and as a result the company would need to increase production and production capacities
- Base case: The scenario according to the considerations set out initially
- Worst case: In the next 4 years, winter would be very mild. Consequently, the demand for the drug would be below anticipation

[^0]: * Long-term debt is the most common form of debt. Debt often includes other types of debt that run for a long period of time such as convertible debt, non-current capital leases and non-current long-term debt. In many cases these are all added together and called long-term debt

[^1]: - Price $(A+B)=\operatorname{Price}(A)+\operatorname{Price}(B)$

[^2]: Source: Thomson Reuters, 13th August 2008

[^3]: * Something to be covered in the future advanced finance course

[^4]: Source: Financial Times, 11 th November 2008

